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>>> digits = [1, 8, 2, 8]
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The number of elements
>>> len(digits) 
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An element selected by its index
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>>> digits = [1, 8, 2, 8]
>>> 1 in digits
True
>>> 8 in digits
True
>>> 5 not in digits
True
>>> not(5 in digits)
True

(Demo)
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Sequence Iteration

def count(s, value): 
    total = 0 
    for element in s: 

        if element == value: 
            total = total + 1 
    return total
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Sequence Iteration

def count(s, value): 
    total = 0 
    for element in s: 

        if element == value: 
            total = total + 1 
    return total

Name bound in the first frame 
of the current environment 

(not a new frame)
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For Statement Execution Procedure

for <name> in <expression>: 
    <suite> 

1. Evaluate the header <expression>, which must yield an iterable value (a sequence)

2. For each element in that sequence, in order:

A. Bind <name> to that element in the current frame

B. Execute the <suite>
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Sequence Unpacking in For Statements

>>> pairs = [[1, 2], [2, 2], [3, 2], [4, 4]] 

>>> same_count = 0

>>> for x, y in pairs: 
...     if x == y: 
...         same_count = same_count + 1 

>>> same_count 
2

A sequence of  
fixed-length sequences

A name for each element in a 
fixed-length sequence

Each name is bound to a value, as in 
multiple assignment
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The Range Type

>>> list(range(-2, 2)) 
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A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

Length: ending value - starting value

Element selection: starting value + index

List constructor
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Recursive Sums



  mysum( [2, 4, 1, 5] )

2 + mysum( [4, 1, 5] )
      4 + mysum( [1, 5] )
          1 + mysum( [5] )
              5 + mysum( [] )
                  0

Sum (recursively)

def mysum(L):    
    if (L == []):
        return 0
    else:    
        return L[0] + mysum( L[1:] )
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# ——— DRILL ———
# Write an iterative function that takes as input
# integer “n” and returns the sum of the first “n”
# integers: sum(5) returns 1+2+3+4+5

def sum_iter(n):
    sum = 0
    for i in range(0,n+1):
        sum = sum + i

    return( sum )
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# ——— DRILL ———
# Write a recursive function that takes as input
# integer “n” and returns the sum of the first “n”
# integers: sum(5) returns 1+2+3+4+5

def sum_rec(n):
    if( n == 0 ):
        return(0)
    else:
        return n + sum_rec(n-1)
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List Comprehensions

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'm', 'n', 'o', 'p']
>>> [letters[i] for i in [3, 4, 6, 8]]

['d', 'e', 'm', 'o']
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List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

A combined expression that evaluates to a list using this evaluation procedure:

1. Add a new frame with the current frame as its parent

2. Create an empty result list that is the value of the expression

3. For each element in the iterable value of <iter exp>:

A. Bind <name> to that element in the new frame from step 1

B. If <filter exp> evaluates to a true value, then add the value of <map exp> 
to the result list

20
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Turns them to shapes, and gives to airy nothing 
A local habitation and a name. 
"""

Representing programs:

'curry = lambda f: lambda x: lambda y: f(x, y)'

(Demo)
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String Literals Have Three Forms

>>> 'I am string!' 
'I am string!' 
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String Literals Have Three Forms

>>> 'I am string!' 
'I am string!' 

>>> "I've got an apostrophe" 
"I've got an apostrophe" 

>>> '您好' 
'您好' 

>>> """The Zen of Python 
claims, Readability counts. 
Read more: import this.""" 
'The Zen of Python\nclaims, Readability counts.\nRead more: import this.' 

"Line feed" character 
represents a new line

A backslash "escapes" the 
following character

Single-quoted and double-quoted 
strings are equivalent
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Reversing a String



reverse(“ward”) = “draw”

reverse(“ward”) = reverse(“ard”) + “w”

     reverse(“ard”) = reverse(“rd”) + “a”

          reverse(“rd”) = reverse(“d”) + “r”

               reverse(“d”) = “d”

Reversing a List (recursively)



reverse(“ward”) = “draw”

reverse(“ward”) = reverse(“ard”) + “w”

     reverse(“ard”) = “d” + “r” + “a”

          

               

Reversing a List (recursively)



def reverse(s):
    if len(s) == 1:
        return s
    else:
        return reverse(s[1:]) + s[0]

Reversing a List (recursively)


