
Containers

Announcements

Lists

['Demo']

Working with Lists

4

Working with Lists

>>> digits = [1, 8, 2, 8]

4

Working with Lists

>>> digits = [1, 8, 2, 8]

4

>>> digits = [2//2, 2+2+2+2, 2, 2*2*2]

Working with Lists

>>> digits = [1, 8, 2, 8]

4

The number of elements

>>> digits = [2//2, 2+2+2+2, 2, 2*2*2]

Working with Lists

>>> digits = [1, 8, 2, 8]

4

The number of elements
>>> len(digits)
4

>>> digits = [2//2, 2+2+2+2, 2, 2*2*2]

Working with Lists

>>> digits = [1, 8, 2, 8]

4

The number of elements
>>> len(digits)
4

An element selected by its index

>>> digits = [2//2, 2+2+2+2, 2, 2*2*2]

Working with Lists

>>> digits = [1, 8, 2, 8]

4

The number of elements
>>> len(digits)
4

An element selected by its index
>>> digits[3]
8

>>> digits = [2//2, 2+2+2+2, 2, 2*2*2]

Working with Lists

>>> digits = [1, 8, 2, 8]

4

The number of elements
>>> len(digits)
4

An element selected by its index
>>> digits[3]
8

>>> getitem(digits, 3)
8

>>> digits = [2//2, 2+2+2+2, 2, 2*2*2]

Working with Lists

>>> digits = [1, 8, 2, 8]

4

The number of elements
>>> len(digits)
4

An element selected by its index
>>> digits[3]
8

Concatenation and repetition

>>> getitem(digits, 3)
8

>>> digits = [2//2, 2+2+2+2, 2, 2*2*2]

Working with Lists

>>> digits = [1, 8, 2, 8]

4

The number of elements
>>> len(digits)
4

An element selected by its index
>>> digits[3]
8

>>> [2, 7] + digits * 2
[2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

Concatenation and repetition

>>> getitem(digits, 3)
8

>>> digits = [2//2, 2+2+2+2, 2, 2*2*2]

Working with Lists

>>> digits = [1, 8, 2, 8]

4

The number of elements
>>> len(digits)
4

An element selected by its index
>>> digits[3]
8

>>> [2, 7] + digits * 2
[2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

Concatenation and repetition

>>> getitem(digits, 3)
8

>>> add([2, 7], mul(digits, 2))
[2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

>>> digits = [2//2, 2+2+2+2, 2, 2*2*2]

Working with Lists

>>> digits = [1, 8, 2, 8]

4

The number of elements
>>> len(digits)
4

An element selected by its index
>>> digits[3]
8

Nested lists

>>> [2, 7] + digits * 2
[2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

Concatenation and repetition

>>> getitem(digits, 3)
8

>>> add([2, 7], mul(digits, 2))
[2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

>>> digits = [2//2, 2+2+2+2, 2, 2*2*2]

Working with Lists

>>> digits = [1, 8, 2, 8]

4

The number of elements
>>> len(digits)
4

An element selected by its index
>>> digits[3]
8

Nested lists
>>> pairs = [[10, 20], [30, 40]]
>>> pairs[1]
[30, 40]
>>> pairs[1][0]
30

>>> [2, 7] + digits * 2
[2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

Concatenation and repetition

>>> getitem(digits, 3)
8

>>> add([2, 7], mul(digits, 2))
[2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

>>> digits = [2//2, 2+2+2+2, 2, 2*2*2]

Containers

Containers

6

Containers

Built-in operators for testing whether an element appears in a compound value

6

Containers

Built-in operators for testing whether an element appears in a compound value

6

>>> digits = [1, 8, 2, 8]

Containers

Built-in operators for testing whether an element appears in a compound value

6

>>> digits = [1, 8, 2, 8]
>>> 1 in digits
True

Containers

Built-in operators for testing whether an element appears in a compound value

6

>>> digits = [1, 8, 2, 8]
>>> 1 in digits
True
>>> 8 in digits
True

Containers

Built-in operators for testing whether an element appears in a compound value

6

>>> digits = [1, 8, 2, 8]
>>> 1 in digits
True
>>> 8 in digits
True
>>> 5 not in digits
True

Containers

Built-in operators for testing whether an element appears in a compound value

6

>>> digits = [1, 8, 2, 8]
>>> 1 in digits
True
>>> 8 in digits
True
>>> 5 not in digits
True
>>> not(5 in digits)
True

Containers

Built-in operators for testing whether an element appears in a compound value

6

>>> digits = [1, 8, 2, 8]
>>> 1 in digits
True
>>> 8 in digits
True
>>> 5 not in digits
True
>>> not(5 in digits)
True

(Demo)

For Statements

(Demo)

Sequence Iteration

8

Sequence Iteration

def count(s, value):
 total = 0
 for element in s:

 if element == value:
 total = total + 1
 return total

8

Sequence Iteration

def count(s, value):
 total = 0
 for element in s:

 if element == value:
 total = total + 1
 return total

Name bound in the first frame
of the current environment

(not a new frame)

8

For Statement Execution Procedure

9

For Statement Execution Procedure

for <name> in <expression>:
 <suite>

9

For Statement Execution Procedure

for <name> in <expression>:
 <suite>

1. Evaluate the header <expression>, which must yield an iterable value (a sequence)

9

For Statement Execution Procedure

for <name> in <expression>:
 <suite>

1. Evaluate the header <expression>, which must yield an iterable value (a sequence)

2. For each element in that sequence, in order:

9

For Statement Execution Procedure

for <name> in <expression>:
 <suite>

1. Evaluate the header <expression>, which must yield an iterable value (a sequence)

2. For each element in that sequence, in order:

A. Bind <name> to that element in the current frame

9

For Statement Execution Procedure

for <name> in <expression>:
 <suite>

1. Evaluate the header <expression>, which must yield an iterable value (a sequence)

2. For each element in that sequence, in order:

A. Bind <name> to that element in the current frame

B. Execute the <suite>

9

Sequence Unpacking in For Statements

10

Sequence Unpacking in For Statements

>>> pairs = [[1, 2], [2, 2], [3, 2], [4, 4]]

>>> same_count = 0

10

Sequence Unpacking in For Statements

>>> pairs = [[1, 2], [2, 2], [3, 2], [4, 4]]

>>> same_count = 0

A sequence of
fixed-length sequences

10

Sequence Unpacking in For Statements

>>> pairs = [[1, 2], [2, 2], [3, 2], [4, 4]]

>>> same_count = 0

>>> for x, y in pairs:
... if x == y:
... same_count = same_count + 1

>>> same_count
2

A sequence of
fixed-length sequences

10

Sequence Unpacking in For Statements

>>> pairs = [[1, 2], [2, 2], [3, 2], [4, 4]]

>>> same_count = 0

>>> for x, y in pairs:
... if x == y:
... same_count = same_count + 1

>>> same_count
2

A sequence of
fixed-length sequences

A name for each element in a
fixed-length sequence

10

Sequence Unpacking in For Statements

>>> pairs = [[1, 2], [2, 2], [3, 2], [4, 4]]

>>> same_count = 0

>>> for x, y in pairs:
... if x == y:
... same_count = same_count + 1

>>> same_count
2

A sequence of
fixed-length sequences

A name for each element in a
fixed-length sequence

Each name is bound to a value, as in
multiple assignment

10

Ranges

The Range Type

A range is a sequence of consecutive integers.*

12

The Range Type

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.
12

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.
12

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

12

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

12

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

12

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

12

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

Length: ending value - starting value

12

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

Length: ending value - starting value

Element selection: starting value + index

12

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

>>> list(range(-2, 2))
[-2, -1, 0, 1]

>>> list(range(4))
[0, 1, 2, 3]

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

Length: ending value - starting value

Element selection: starting value + index

12

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

>>> list(range(-2, 2))
[-2, -1, 0, 1]

>>> list(range(4))
[0, 1, 2, 3]

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

Length: ending value - starting value

Element selection: starting value + index

List constructor

12

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

>>> list(range(-2, 2))
[-2, -1, 0, 1]

>>> list(range(4))
[0, 1, 2, 3]

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

Length: ending value - starting value

Element selection: starting value + index

List constructor

Range with a 0 starting value

12

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

>>> list(range(-2, 2))
[-2, -1, 0, 1]

>>> list(range(4))
[0, 1, 2, 3]

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

Length: ending value - starting value

Element selection: starting value + index

List constructor

Range with a 0 starting value

(Demo)

12

Recursive Sums

 mysum([2, 4, 1, 5])

2 + mysum([4, 1, 5])
 4 + mysum([1, 5])
 1 + mysum([5])
 5 + mysum([])
 0

Sum (recursively)

def mysum(L):
 if (L == []):
 return 0
 else:
 return L[0] + mysum(L[1:])

——— DRILL ———
Write an iterative function that takes as input
integer “n” and returns the sum of the first “n”
integers: sum(5) returns 1+2+3+4+5

——— DRILL ———
Write an iterative function that takes as input
integer “n” and returns the sum of the first “n”
integers: sum(5) returns 1+2+3+4+5

def sum_iter(n):
 sum = 0
 for i in range(0,n+1):
 sum = sum + i

 return(sum)

——— DRILL ———
Write a recursive function that takes as input
integer “n” and returns the sum of the first “n”
integers: sum(5) returns 1+2+3+4+5

——— DRILL ———
Write a recursive function that takes as input
integer “n” and returns the sum of the first “n”
integers: sum(5) returns 1+2+3+4+5

def sum_rec(n):
 if(n == 0):
 return(0)
 else:
 return n + sum_rec(n-1)

List Comprehensions

List Comprehensions

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'm', 'n', 'o', 'p']
>>> [letters[i] for i in [3, 4, 6, 8]]

List Comprehensions

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'm', 'n', 'o', 'p']
>>> [letters[i] for i in [3, 4, 6, 8]]

['d', 'e', 'm', 'o']

List Comprehensions

20

List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

20

List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

20

List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

A combined expression that evaluates to a list using this evaluation procedure:

20

List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

A combined expression that evaluates to a list using this evaluation procedure:

1. Add a new frame with the current frame as its parent

20

List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

A combined expression that evaluates to a list using this evaluation procedure:

1. Add a new frame with the current frame as its parent

2. Create an empty result list that is the value of the expression

20

List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

A combined expression that evaluates to a list using this evaluation procedure:

1. Add a new frame with the current frame as its parent

2. Create an empty result list that is the value of the expression

3. For each element in the iterable value of <iter exp>:

20

List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

A combined expression that evaluates to a list using this evaluation procedure:

1. Add a new frame with the current frame as its parent

2. Create an empty result list that is the value of the expression

3. For each element in the iterable value of <iter exp>:

A. Bind <name> to that element in the new frame from step 1

20

List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

A combined expression that evaluates to a list using this evaluation procedure:

1. Add a new frame with the current frame as its parent

2. Create an empty result list that is the value of the expression

3. For each element in the iterable value of <iter exp>:

A. Bind <name> to that element in the new frame from step 1

B. If <filter exp> evaluates to a true value, then add the value of <map exp>
to the result list

20

Strings

Strings are an Abstraction

22

Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '[1, 2]'

22

Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '[1, 2]'

Representing language:

"""And, as imagination bodies forth
The forms of things unknown, the poet's pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.
"""

22

Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '[1, 2]'

Representing language:

"""And, as imagination bodies forth
The forms of things unknown, the poet's pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.
"""

Representing programs:

'curry = lambda f: lambda x: lambda y: f(x, y)'

22

Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '[1, 2]'

Representing language:

"""And, as imagination bodies forth
The forms of things unknown, the poet's pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.
"""

Representing programs:

'curry = lambda f: lambda x: lambda y: f(x, y)'

(Demo)

22

String Literals Have Three Forms

>>> 'I am string!'
'I am string!'

>>> "I've got an apostrophe"
"I've got an apostrophe"

>>> '您好'
'您好'

23

String Literals Have Three Forms

>>> 'I am string!'
'I am string!'

>>> "I've got an apostrophe"
"I've got an apostrophe"

>>> '您好'
'您好'

Single-quoted and double-quoted
strings are equivalent

23

String Literals Have Three Forms

>>> 'I am string!'
'I am string!'

>>> "I've got an apostrophe"
"I've got an apostrophe"

>>> '您好'
'您好'

>>> """The Zen of Python
claims, Readability counts.
Read more: import this."""
'The Zen of Python\nclaims, Readability counts.\nRead more: import this.'

Single-quoted and double-quoted
strings are equivalent

23

String Literals Have Three Forms

>>> 'I am string!'
'I am string!'

>>> "I've got an apostrophe"
"I've got an apostrophe"

>>> '您好'
'您好'

>>> """The Zen of Python
claims, Readability counts.
Read more: import this."""
'The Zen of Python\nclaims, Readability counts.\nRead more: import this.'

A backslash "escapes" the
following character

Single-quoted and double-quoted
strings are equivalent

23

String Literals Have Three Forms

>>> 'I am string!'
'I am string!'

>>> "I've got an apostrophe"
"I've got an apostrophe"

>>> '您好'
'您好'

>>> """The Zen of Python
claims, Readability counts.
Read more: import this."""
'The Zen of Python\nclaims, Readability counts.\nRead more: import this.'

"Line feed" character
represents a new line

A backslash "escapes" the
following character

Single-quoted and double-quoted
strings are equivalent

23

Reversing a String

reverse(“ward”) = “draw”

reverse(“ward”) = reverse(“ard”) + “w”

 reverse(“ard”) = reverse(“rd”) + “a”

 reverse(“rd”) = reverse(“d”) + “r”

 reverse(“d”) = “d”

Reversing a List (recursively)

reverse(“ward”) = “draw”

reverse(“ward”) = reverse(“ard”) + “w”

 reverse(“ard”) = “d” + “r” + “a”

Reversing a List (recursively)

def reverse(s):
 if len(s) == 1:
 return s
 else:
 return reverse(s[1:]) + s[0]

Reversing a List (recursively)

