Announcements Data Abstraction Data Abstraction -Compound values combine other values together -A date: a year, a month, and a day -A geographic position: latitude and longitude -Data abstraction lets us manipulate compound values as units -Isolate two parts of any program that uses data: -How data are represented (as parts) -How data are manipulated (as units) -Data abstraction: A methodology by which functions enforce an abstraction barrier between representation and use ``` Representing Rational Numbers def rational(n, d): """Construct.a rational number that represents N/D.""" return([n, d]) Construct a list def numer(x): """Return the numerator of rational number X.""" return x[0] def denom(x): """Return the denominator of rational number X.""" return(x[1]) Select item from a list (Demo) ``` ``` Reducing to Lowest Terms \frac{3}{2}*\frac{5}{3}=\frac{5}{2} \qquad \frac{2}{5}*\frac{1}{10}=\frac{1}{2} \frac{15}{6}*\frac{1/3}{1/3}=\frac{5}{2} \qquad \frac{25}{50}*\frac{1/25}{1/25}=\frac{1}{2} from math import (gcd) Greatest common divisor \frac{15}{6}*\frac{1/3}{1/3}=\frac{5}{2} \qquad \frac{1}{2}*\frac{1}{2} ``` ``` Abstraction Barriers Parts of the program that... Treat rationals as... Using... Use rational numbers to perform computation whole data values add_rational, mul_rational rationals_are_equal, print_rational Create rationals or implement numerators and denominators rational, numer, denom Implement selectors and constructor for rationals two-element lists list literals and element selection Implementation of lists ``` ``` Does not use constructors add_rational([1, 2], [1, 4]) def divide_rational(x, y): return [x[0] * y[1], x[1] * y[0]] No selectors! ``` ## Data Representations ``` What are Data? *We need to guarantee that constructor and selector functions work together to specify the right behavior *Behavior condition: If we construct rational number x from numerator n and denominator d, then numer(x)/denom(x) must equal n/d *Data abstraction uses selectors and constructors to define behavior *If behavior conditions are met, then the representation is valid You can recognize an abstract data representation by its behavior (Demo) ``` ## Limitations on Dictionaries Dictionaries are $\ensuremath{\mathsf{unordered}}$ collections of key-value pairs Dictionary keys do have two restrictions: - ullet A key of a dictionary **cannot be** a list or a dictionary (or any $mutable\ type$) - Two keys cannot be equal; There can be at most one value for a given key This first restriction is tied to Python's underlying implementation of dictionaries $\label{eq:python} % \begin{center} \beg$ The second restriction is part of the dictionary abstraction If you want to associate multiple values with a key, store them all in a sequence value $% \left(\left(1\right) \right) =\left(1\right) \left(\left(1\right) \right) \left(1\right) \left($