Data Abstraction Announcements

Data Abstraction

«Compound values combine other values together

A date: a year, a month, and a day

sJauwelboid
1nv

A geographic position: latitude and longitude
. +Data abstraction lets us manipulate compound values as units
Data Abstraction
-Isolate two parts of any program that uses data:

How data are represented (as parts)

sJauwwedboag
jeau9

How data are manipulated (as units)

-Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

Rational Numbers Rational Number Arithmetic
numerator
denominator 3 3 9
* — = —
2 5 10

Exact representation of fractions
A pair of integers

As soon as division occurs, the exact representation may be lost! (Demo)
3 3 21 nxkdy + nyxdx
Assume we can compose and decompose rational numbers: —_— + — = — B —
2 5 10 dxxdy

numer(x)| returns the numerator of x

i Example General Form
«:denom(x); returns the denominator of x

Rational Number Arithmetic Implementation

def mul_rational(x, y): .
returnirationaltnumer(x) x numer{y),
denom(x) * denom{y)) (087

def add_rational(x, y):
nx, dx = numer(x), denom(x) Pairs
ny, dy = numer(y), denom(y)
return rational(nx * dy + ny * dx, dx * dy)

nxxdy + nysdx
de —_—

LY

print_rational(x):
print(numer(x), '/', denom(x)) dxxdy

def rationals_are_equal(x, y):
return numer(x) * denom(y) == numer(y) * denom(x)

i *rational(n, d) returns a rational number x i These functions implement an
i *numer(x) returns the numerator of x i abstract representation
| *denom(x) returns the denominator of x for rational numbers

Representing Pairs Using Lists

>>> pair = [1, 2] A list literal:

>[;> g?ll’ Comma-separated expressions in brackets
>>> x, y = pair "Unpacking" a list

5> X

1

s>y

2

>>> pair[0] Element selection using the selection operator
1

>>> pair[1]

2

Representing Rational Numbers

def rational(n, d):
"""Construct a rational number that represents N/D.
return {[n, d]}

Construct a list

def numer(x):
"""Return the numerator of rational number X.
return x[0]

def denom(x):
"""Return the denominator of rational number X."""
returni x[1]

[Select item from a list]

(Demo)

Reducing to Lowest Terms

Example:
3 5 5 2 1 1
_— %k — = — — + — —
2 3 2 5 10 2
15 1/3 5 25 1/25 1
—_ = = — —_— o —— = —
6 1/3 2 50 1/25 2

from math 1mport{§cd i Greatest common divisor

def rational(n, d):
"""Construct a rational that represents n/d in lowest terms."""
g = gcd(n, d)
return [n//g, d//g]

(Demo)

Abstraction Barriers

Abstraction Barriers

Parts of the program that Treat rationals as

Use rational numbers
to perform computation

add_rational, mul_rational

hole data values
v vatu rationals_are_equal, print_rational

Create rationals or implement numerators and

L rational, numer, denom
rational operations denominators

Inplement selectors and

constructor for rationals two-element lists list literals and element selection

Implementation of lists

Violating Abstraction Barriers

Does not use

constructors

add_rational([1, 21, [1, 4])

def divide_rational(x, y):
return [x[0] * y[11, x[1] * y[o] 1

And no constructor!

Data Representations

What are Data?
-We need to guarantee that constructor and selector functions work
together to specify the right behavior

-Behavior condition: If we construct rational number x from numerator
n and denominator d, then numer(x)/denom(x) must equal n/d

-Data abstraction uses selectors and constructors to define behavior

<If behavior conditions are met, then the representation is valid

You can recognize an abstract data representation by its behavior

(Demo)

Rationals Implemented as Functions

Global frame _——>func rational(n, d) [parent=Global

def rational(n, d): rational [

def select(name):

>func numer (x) [parent=Global]

This numer
if name == 'n': function denom |«—>func denon(x) (parent=Global)
return n represents X[func select(nane) [parent=11]
elif name == 'd': i| a rational
] f1: rational (parent=Global]
i return d) number P - L .
return select e Dictionaries
select
) Return
Constructor is a value

higher-order function

2: numer [parent=Global

def numer(x):

returni x('n')’ e |3
def denom(x): Selector calls x 3: select [parent=f1] . {'Dem': 0}
g name |"n -
return x('d") et x = ra
value |3 numer(x)

Limitations on Dictionaries
Dictionaries are unordered collections of key-value pairs
Dictionary keys do have two restrictions:
*A key of a dictionary cannot be a list or a dictionary (or any mutable type)
*Two keys cannot be equal; There can be at most one value for a given key
This first restriction is tied to Python's underlying implementation of dictionaries
The second restriction is part of the dictionary abstraction

If you want to associate multiple values with a key, store them all in a sequence value

