
Trees Announcements

Congratulations to the Winners of the Hog Strategy Contest

1st Place with 146 wins:

A five-way tie for first place!

3

hog-contest.cs61a.org

Congratulations to Timothy Guo, Shomini Sen, Samuel Berkun, Mitchell Zhen, Lucas Clark,
Dominic de Bettencourt, Allen Gu, Alec Li, Aaron Janse

Bobby Tables

1.6180339887

Anonymous Poetblockchain

wet app program

"A submission scores a match point
each time it has an expected win
rate strictly above 50.0001%."

Box-and-Pointer Notation

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if:

 The result of combination can itself be combined using the same method

•Closure is powerful because it permits us to create hierarchical structures

•Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on

Lists can contain lists as elements (in addition to anything else)

5

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

6

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

7
pythontutor.com/composingprograms.html#code=pair%20%3D%20[1,%202]%0A%0Anested_list%20%3D%20[[1,%202],%20[],%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20[[3,%20False,%20None],
%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20[4,%20lambda%3A%205]]]&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=4

Slicing

(Demo)

Slicing Creates New Values

9
pythontutor.com/composingprograms.html#code=digits%20%3D%20[1,%208,%202,%208]%0Astart%20%3D%20digits[%3A1]%0Amiddle%20%3D%20digits[1%3A3]%0Aend%20%3D%20digits[2%3A]%0Afull%20%3D%20digits[%3A]&cumulative%3Dtrue&curInstr%3D5&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=[]

Processing Container Values

Sequence Aggregation

Several built-in functions take iterable arguments and aggregate them into a value

• sum(iterable[, start]) -> value

Return the sum of a 'start' value (default: 0) plus an iterable of numbers.

• max(iterable[, key=func]) -> value
max(a, b, c, ...[, key=func]) -> value

With a single iterable argument, return its largest item.
With two or more arguments, return the largest argument.

• all(iterable) -> bool

Return True if bool(x) is True for all values x in the iterable.
If the iterable is empty, return True.

11

Trees

Tree Abstraction

13

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes

People often refer to labels by their locations: "each parent is the sum of its children"

Root of the whole tree

Root of a branch

Path

 or Root Node
Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

14

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(label, branches=[]):
 return [label] + branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

Implementing the Tree Abstraction

(Demo)

15

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)

def is_leaf(tree):
 return not branches(tree)

Verifies that
tree is bound

to a list

Creates a list
from a sequence

of branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def tree(label, branches=[]):
Verifies the

tree definition

• A tree has a root label
and a list of branches

• Each branch is a tree

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Tree Processing

(Demo)

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

17

(Demo)

def count_leaves(t):

 """Count the leaves of a tree."""

 if is_leaf(t):

 return 1

 else:

 branch_counts = [count_leaves(b) for b in branches(t)]

 return sum(branch_counts)

def leaves(tree):
 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """
 if is_leaf(tree):
 return [label(tree)]
 else:
 return sum(______________________________, [])

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

18

>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]
>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])
[[1], 2]

List of leaf labels for each branch

branches(tree)

[branches(b) for b in branches(tree)]

leaves(tree)

[leaves(b) for b in branches(tree)]

[b for b in branches(tree)]

[branches(s) for s in leaves(tree)]

[s for s in leaves(tree)]

[leaves(s) for s in leaves(tree)]

Creating Trees

A function that creates a tree from another tree is typically also recursive

19

def increment(t):
 """Return a tree like t but with all labels incremented."""
 return tree(label(t) + 1, [increment(b) for b in branches(t)])

def increment_leaves(t):
 """Return a tree like t but with leaf labels incremented."""
 if is_leaf(t):
 return tree(label(t) + 1)
 else:
 bs = [increment_leaves(b) for b in branches(t)]
 return tree(label(t), bs)

Example: Printing Trees

(Demo)

Example: Summing Paths

(Demo)

