Trees

Announcements

Congratulations to the Winners of the Hog Strategy Contest

1st Place with 146 wins: "A submission scores a match point

each time it has an expected win

A five-way tie for first place! rate strictly above 50.0001%."

Bobby Tables

N

blockchain #==-===-sfrcmuccimnnnn + Anonymous Poet

wet app program —— 1.6180339887

Congratulations to Timothy Guo, Shomini Sen, Samuel Berkun, Mitchell Zhen, Lucas Clark,
Dominic de Bettencourt, Allen Gu, Alec Li, Aaron Janse

hog-contest.cs6la.or

Box-and-Pointer Notation

The Closure Property of Data Types

* A method for combining data values satisfies the closure property if:
The result of combination can itself be combined using the same method
* Closure is powerful because it permits us to create hierarchical structures

* Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on

Lists can contain lists as elements (in addition to anything else)

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element
Each box either contains a primitive value or points to a compound value
Global frame list

pair [« > Dl

pair = [1, 2]

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element
Each box either contains a primitive value or points to a compound value

Global frame list

. [0 |t
pair < |,

nested_list
list list
o |1 |2 0 |1

12
empy list
pair = [1, 2] list list
o |1,
nested_list = [[1, 2], []. 3 | False = None
[[3, False, None],
[4, lambda: 5111 Jist func A() <line 5> [parent=Global]
: : o 1/
4

Slicing

(Demo)

Slicing Creates New Values

digits = [1, 8, 2, 8]
start = digits(:1]
middle = digits([1:3]
end = digits[2:]
full = digits[:]

Global frame

digits
start
middle
end
full

Processing Container Values

Sequence Aggregation

Several built-in functions take iterable arguments and aggregate them into a value

« sum(iterable[, start]) —> value
Return the sum of a 'start' value (default:

- max(iterable[, key=func]) -> value

@) plus an iterable of numbers.

max(a, b, ¢, ...[, key=funcl) —> value Trees
With a single iterable argument, return its largest item.
With two or more arguments, return the largest argument.
+ all(iterable) —> bool
Return True if bool(x) is True for all values x in the iterable.
If the iterable is empty, return True.
Tree Abstraction Implementing the Tree Abstraction
Root of the whole tree or Root Node
oot Label def tree(label, branches=[1): « A tree has a root label
oot labe return [labell + branches and a list of branches
Root of a branch + Each branch is a tree
\\ def label(tree):
Branch = return tree[0]
(also a tree) 3
def branches(tree): / \
Leaf/vt | < return tree[1:]] 5
(also a tree) | Pathse=* Va N
) 1 1

Recursive description (wooden trees):

A tree has a root label and a list of branches
Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

Relative description (family trees):

Each location in a tree is called a node
Each node has a label that can be any value
One node can be the parent/child of another
The top node is the root node

People often refer to labels by their locations: “each parent is the sum of its children"

>>> tree(3, [tree(1),

tree(2, [tree(1),
tree(1)1)1)
|

Implementing the Tree Abstraction

def tree(label, branches=[]):
“for branch in branches: Verifi
assert is_tree(branch)’
return [label]l +{list(branches)

the

Creates a list
from a sequence
of branches

def label(tree):
return tree[0]

def branches(tree):
return tree[1:]

Verifies that
tree is bound
to a list

def is_tree(tree):
ifitype(tree) != listior len(tree) < 1:
return False
for branch in branches(tree):
if not is_tree(branch):
return False
return True

* A tree has a root label
and a list of branches

* Each branch is a tree

tree definition

3
/ \
1 2
/ N
1 1

>>> tree(3, [tree(1),
tree(2, [tree(1),
tree(1)]1)1)
[3, [11, [2, [1], [1]1]]

def is_leaf(tree):
return not branches(tree) (Demo)

Tree Processing

(Demo)

Tree Processing Uses Recursion Discussion Question
Processing a leaf is often the base case of a tree processing function Implement leaves, which returns a list of the leaf labels of a tree
The recursive case typically makes a recursive call on each branch, then aggregates Hint: If you sum a list of lists, you get a list containing the elements of those lists
>>> sum([[1], [2, 3], [4] 1, [1) def leaves(tree)
[1, 2, 3, 4] """Return a list containing the leaf labels of tree.
def count_leaves(t): >>> sum([[11 1, [1)
win win [1] >>> leaves(fib_tree(5))
ount the Leaves of a tree. > sun([[011, (211, 1) 11,0 1,0 1,1, 0, 1]
if is_leaf(t): [ra1, 21 i
return 1 if is_leaf(tree)
return [label(tree)]
else: else: 1 label.
List of leaf labels for each branch
branch_counts = [count_leaves(b) for b in branches(t)] return sun(Y
return sum(branch_counts) branches (tree) [b for b in branches(tree)]
leaves(tree) [s for s in leaves(tree)]
(Demo) [branches(b) for b in branches(tree)] [branches(s) for s in leaves(tree)]
[[leaves(b) for b in branches(tree)]] [leaves(s) for s in leaves(tree)]

Creating Trees
A function that creates a tree from another tree is typically also recursive

def increment_leaves(t):
"""Return a tree like t but with leaf labels incremented."""
if is_leaf(t):
return tree(label(t) + 1)
else:
bs = [increment_leaves(b) for b in branches(t)]
return tree(label(t), bs)

Example: Printing Trees

def increment(t):
"""Return a tree like t but with all labels incremented."""

(Demo)
return tree(label(t) + 1, [increment(b) for b in branches(t)])

Example: Summing Paths

(Demo)

