723

Numbers

$$
723
$$

(23
(23
\qquad
723
723
723
723
\qquad

(23

\footnotetext{

 \begin{tabular}{l}

\hline

\hline
\end{tabular}}

723

Binary Numbers Binary Numbers Binary Numbers
Binary Numbers

$723=7 \times 100+2 \times 10+3 \times 1$
\qquad
\qquad
\qquad
\square
\square


```
\(\square\)
```


\square

\qquad
\qquad
\qquad
\qquad
\qquad

$$
723=7 \times 100+2 \times 10+3 \times 1
$$

 \square
\square
\square
\qquad

-

-

-

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

- \qquad
\qquad
\qquad
\qquad

\square
 D

\qquad

$-$

\qquad

\qquad
.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Binary Numbers

$$
\begin{aligned}
723 & =7 \times 100+2 \times 10+3 \times 1 \\
& =7 \times 10^{2}+2 \times 10^{1}+3 \times 10^{0}
\end{aligned}
$$

Binary Numbers

$$
5349=5 \times 10^{3}+3 \times 10^{2}+4 \times 10^{1}+9 \times 10^{0}
$$

Binary Numbers

Why base I0?

Binary Numbers

$$
\begin{gathered}
257 \text { (base } 8 \text {) } \\
2 \times 8^{2}+5 \times 8^{1}+7 \times 8^{0} \\
2 \times 64+5 \times 8+7 \times 1 \\
175 \text { (base 10) }
\end{gathered}
$$

Binary Numbers

$$
\begin{gathered}
0110(\text { base } 2) \\
0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0} \\
0 \times 8+1 \times 4+1 \times 2+0 \times 1 \\
6(\text { base } 10)
\end{gathered}
$$

Binary Numbers

2-bit binary number

Binary Numbers

000	0	
001	1	
010	2	
011	3	
100	4	
101	5	
110	6	
111	7	\max value $=2^{3}-I$

3-bit binary number

Binary Numbers

0000	0	
0001	1	
0010	2	
0011	3	
0100	4	
0101	5	
0110	6	
0111	7	
1000	8	
1001	9	
1010	10	
1011	11	
1100	12	
1101	13	
1110	14	15
1111		

4-bit binary number

Binary Numbers (why?)

\square

reliability!
reliability!
-

\square
\square

\square
\square

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Abstract

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
 \qquad
 (

Binary Numbers (why?)

0

4

$\begin{array}{ll}9 & \square \\ 8 & \square \\ 7 & \square \\ 6 & \square \\ 5 & \square \\ 4 & \square \\ 3 & \square \\ 2 & \square \\ 1 & \square \\ 0 & \square\end{array}$

6

Binary Numbers (why?)
\square

How do we encode negative numbers?
How .

 \qquad
\qquad

 To

\qquad
 \qquad

\qquad

 \qquad

 \qquad

 \begin{abstract}
\qquad

 \section*{\footnotetext{

 \section*{\section*{| |
| :---: |
| |
| |
| $\frac{\mathrm{o}}{\frac{o}{2}}$ |
| \vdots |
| $\frac{0}{6}$ |
| $\frac{0}{0}$ |
| $\frac{0}{0}$ |
| $\frac{0}{0}$ |
| |

 \section*{\footnotetext{

 \section*{\section*{| |
| :---: |
| |
| |
| $\frac{\mathrm{o}}{\frac{o}{2}}$ |
| \vdots |
| $\frac{0}{6}$ |
| $\frac{0}{0}$ |
| $\frac{0}{0}$ |
| $\frac{0}{0}$ |
| |

 \section*{\footnotetext{

 \section*{\section*{| |
| :---: |
| |
| |
| $\frac{\mathrm{o}}{\frac{o}{2}}$ |
| \vdots |
| $\frac{0}{6}$ |
| $\frac{0}{0}$ |
| $\frac{0}{0}$ |
| $\frac{0}{0}$ |
| |

 }

 }

 }

\qquad
\qquad

Binary Numbers
use left-most bit to represent sign

$$
0="+"
$$

| = "-"

Binary Numbers

sign 2^{2120}	
$\downarrow!\downarrow$	
000	0
001	1
010	2
011	3
100	
101	
110	
111	

3-bit signed binary number

Binary Numbers

$\operatorname{sign} 2120$		
$!!!$		
000	0	
001	1	
010	2	
011	3	
100	-0	$? ? ?$
101	-1	
110	-2	
111	-3	

3-bit signed binary number

Binary Numbers (two's complement)
I. start with an unsigned 4-bit binary number where leftmost bit is 0

- $0110=6$

Binary Numbers (two's complement)
I. start with an unsigned 4-bit binary number where leftmost bit is 0

- $0110=6$

2. complement your binary number (flip bits)

- 1001

Binary Numbers (two's complement)
I. start with an unsigned 4-bit binary number where leftmost bit is 0

- $0110=6$

2. complement your binary number (flip bits)

- 1001

3. add one to your binary number

- $1010=-6$

Binary Numbers (two's complement)

positive	complement	+1
0	000	
1	001	0
2	010	-1
3	011	-2
		-3

3-bit signed binary number

Binary Numbers (two's complement)

positive	complement		+1	negzitive
0	000			0
1	001	$\longrightarrow 110$	$\longrightarrow 111$	-1
2	010			-2
3	011			-3

3-bit signed binary number

Binary Numbers (two's complement)

positive	complement	${ }^{+1}$	negzative 0	000
			0	
1	001	$\longrightarrow 110$	$\longrightarrow 111$	-1
2	010	$\longrightarrow 101$	$\longrightarrow 110$	-2
3	011			-3

3-bit signed binary number

Binary Numbers (two's complement)

positive	complement	${ }^{+1}$	negative 0	000
		0		
1	001	$\longrightarrow 110$	$\longrightarrow 111$	-1
2	010	$\longrightarrow 101$	$\longrightarrow 110$	-2
3	011	$\longrightarrow 100$	$\longrightarrow 101$	-3

3-bit signed binary number

Binary Numbers (two's complement)

ositive		complement	+1	
0	000	$\longrightarrow 111$	\longrightarrow	0
1	001	$\longrightarrow 110$	$\longrightarrow 111$	-1
2	010	$\rightarrow 101$	$\longrightarrow 110$	-2
3	011	$\longrightarrow 100$	101	-3

3-bit signed binary number

Binary Numbers (two's complement)

positive	complement	${ }^{+1}$	negative	
0	000	$\longrightarrow 111$	$\longrightarrow 000$	0
1	001	$\longrightarrow 110$	$\longrightarrow 111$	-1
2	010	$\longrightarrow 101$	$\longrightarrow 110$	-2
3	011	$\longrightarrow 100$	$\longrightarrow 101$	-3

3-bit signed binary number

Binary Numbers (two's complement)

positive	complement	${ }^{+\prime}$	negative	
0	000	$\longrightarrow 111$	$\longrightarrow 000$	0
1	001	$\longrightarrow 110$	$\longrightarrow 111$	-1
2	010	$\longrightarrow 101$	$\longrightarrow 110$	-2
3	011	$\longrightarrow 100$	$\longrightarrow 101$	-3

we lost a number?

Binary Numbers (two's complement)

postive		complement	+1	regative
0	000	$\rightarrow 111$	-000	0
1	001	$\longrightarrow 110$	-111	-1
2	010	$\longrightarrow 101$	$\rightarrow 110$	-2
3	011	$\longrightarrow 100$	-101	-3
			100	

we lost a number?

Binary Numbers (two's complement)

Binary Numbers (two's complement)

complement	100	010
		011
011		100
		101
		110

Binary Numbers (two's complement)

complement

$100 \longleftarrow 011 \longleftarrow 100$

Binary Numbers (two's complement)

complement

$4100 \longleftarrow 011 \longleftarrow 100$00

Binary Numbers (two's complement)

positive		complement	+1	
0	000	$\longrightarrow 111$	000	0
1	001	$\longrightarrow 110$	$\rightarrow 111$	-1
2	010	$\longrightarrow 101$	$\longrightarrow 110$	-2
3	011	$\longrightarrow 100$	$\longrightarrow 101$	-3
			100	-4

n-bit unsigned binary numbers: 0...2n-1

Binary Numbers (two's complement)

ositio		mplement	+1	1egrave
0	000	$\longrightarrow 111$	$\bigcirc 00$	0
1	001	$\longrightarrow 110$	-111	-1
2	010	$\longrightarrow 101$	-110	-2
3	011	$\longrightarrow 100$	-101	-3
			100	-4

n-bit signed binary numbers: -2n-1... $2^{n-1}-1$

Binary Numbers (two's complement)

0010	2
0010	2
+---	+
0100	4

summing unsigned binary numbers is easy

Binary Numbers (two's complement)

0010	2
1010	-2
+---	+
1100	0

Binary Numbers (two's complement)

0011	3
1011	-3
+---	+-
1110	0

Binary Numbers (two's complement)

summing signed (2's complement) binary numbers

Binary Numbers (two's complement)

summing signed (2's complement) binary numbers

Binary Numbers (two's complement)

summing signed (2's complement) binary numbers

Binary Numbers (two's complement)

summing signed (2's complement) binary numbers

Binary Numbers (decoding two's complement)

$$
0111=?
$$

4-bit signed (two's complement) binary number

Binary Numbers (decoding two's complement)

$$
0111=7
$$

4-bit signed (two's complement) binary number

Binary Numbers (decoding two's complement)

$$
1011=?
$$

4-bit signed (two's complement) binary number

Binary Numbers (decoding two's complement)

$$
1011 \quad 1010
$$

4-bit signed (two's complement) binary number

Binary Numbers (decoding two's complement)

101110100101

4-bit signed (two's complement) binary number

Binary Numbers (decoding two's complement)

	subtract I	complement	
1011	1010	0101	5

4-bit signed (two's complement) binary number

Binary Numbers (decoding two's complement)

$$
1011=-5
$$

4-bit signed (two's complement) binary number

Binary Numbers
How do we encode fractional numbers?
How do we encode fractional numbers?
\square
How do we encode fractional numbers?

\qquad .


```
\(\square\)
``` 2 \(\square\)
 (.
\(\qquad\)
(
\(\qquad\)
\(\qquad\)
-

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)

\(\qquad\)
\(\pm\) mantissa \(\times\) base \(\pm\) exponent

\author{
\author{
mantissa x Jade -
}
}
\(\pm\) mantissa \(\times\) base \(\pm\) exponent
?
\(\square\)
\(\square\)

\author{
- \\ \(\longrightarrow\) \\ \\ \(\rightarrow\)
}

эueuodxe ₹ sea \(x\) esspareu \(\mp\) \(\square\)
-

\begin{abstract}

\end{abstract}
\(\pm\) mantissa \(\times\) base \(\pm\) exponent
\(\square\)
\(x^{2}\)
\(\qquad\)
\[
\begin{align*}
& \text { Boolean Logic (variables) } \\
& \qquad \begin{array}{l}
1=\text { True } \\
0=\text { False }
\end{array}
\end{align*}
\]
.
.
F
\(\qquad\)
\(\qquad\)(
\(\qquad\)
\(\square\)

\begin{abstract}
厄
\end{abstract}

\(\square\)

\(\qquad\)
- \(\square\)

.
\(\qquad\)
\(\square\)
\(\square\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
 To ser
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Boolean Logic (truth tables)
\(\mathbf{a}\) and \(\mathbf{b}\) \(\mathbf{a}\) and \(\mathbf{b}\) \(\square\)

\begin{abstract}
O
\end{abstract} . 0

[
\(\qquad\)

\[
1
\]
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{a}\) and \(\mathbf{b}\) \\
\hline I & I & I \\
\hline I & 0 & 0 \\
\hline 0 & I & 0 \\
\hline 0 & 0 & 0 \\
\hline
\end{tabular}

Boolean Logic (truth tables)\(\square\)
\(\square\)
 0 \(\square\) \(\square\) \(\square\)
.
里

\[
-
\]
.

Boolean Logic (truth tables)

\(\qquad\)
\begin{tabular}{|c|c|}
\hline \(\mathbf{a}\) & not \(\mathbf{a}\) \\
\hline 1 & 0 \\
\hline 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline a & not a \\
\hline 1 & 0 \\
\hline 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \(\mathbf{a}\) & not \(\mathbf{a}\) \\
\hline 1 & 0 \\
\hline 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \(\mathbf{a}\) & not \(\mathbf{a}\) \\
\hline 1 & 0 \\
\hline 0 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|}
\hline \(\mathbf{a}\) & not \(\mathbf{a}\) \\
\hline 1 & 0 \\
\hline 0 & 1 \\
\hline
\end{tabular}
 \begin{tabular}{|c|c|c|}
\hline a & not a \\
\hline & 0 & 1 \\
\hline & 0 \\
\hline
\end{tabular}

2
\begin{tabular}{|c|c|}
\hline \(\mathbf{a}\) & not \(\mathbf{a}\) \\
\hline I & 0 \\
\hline 0 & I \\
\hline
\end{tabular}
\(\square\)

\(\square\)

 0 O O
 O O
 0 (

\(\square\)

\begin{abstract}
\author{
-
}
not
\end{abstract}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
2

\section*{ \\ . \\ R \\ \footnotetext{

}}
er

Boolean Logic (truth tables)
\[
\begin{array}{cc}
\text { input } & \text { output } \\
\text { (boolean variable) } & \text { (boolean variable) }
\end{array}
\]
\(\mathbf{a}, \mathbf{b} \quad \mathbf{a}\) and \(\mathbf{b}\)
\(\mathbf{a}\) or \(\mathbf{b}\)
not a

Gates
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{a}\) and \(\mathbf{b}\) \\
\hline \(\mathbf{I}\) & l & I \\
\hline \(\mathbf{I}\) & 0 & 0 \\
\hline 0 & I & 0 \\
\hline \(\mathbf{0}\) & 0 & 0 \\
\hline
\end{tabular}

Gates
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{a}\) or \(\mathbf{b}\) \\
\hline I & I & I \\
\hline I & 0 & I \\
\hline 0 & \(I\) & I \\
\hline 0 & 0 & 0 \\
\hline
\end{tabular}
\(a \rightarrow+=-a\) or \(b\)
 \(++\mathbf{a}\) or \(\mathbf{b}\)

\[
\pi+2-a
\]

Gates
 \begin{tabular}{|c|c|c|c|}
\hline \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{a}\) or \(\mathbf{b}\) \\
\hline & & & \\
\hline
\end{tabular}
\(\square\)
```

- 

```


\(\square\)
\(\square\)
\(\square\)
\(\square\)

rex
號
\(\square\)

\(\square\)

\(\square\)

\(+\)
这
\begin{tabular}{|c|c|}
\hline \(\mathbf{a}\) & not \(\mathbf{a}\) \\
\hline \(\mathbf{I}\) & 0 \\
\hline 0 & \(I\) \\
\hline
\end{tabular}

Gates

\footnotetext{
- not a \(\mathfrak{a}\)
}
\(\qquad\)
gates

\section*{} \begin{tabular}{|c|c|c|}
\hline \(\mathbf{a}\) & not \(\mathbf{a}\) \\
\hline 1 & 0 \\
\hline 0 & 1 \\
\hline
\end{tabular}
\[
\square
\]
\[
0^{2}
\] . -

\author{
\(\qquad\)
}
r

Building Gates (transistors)

power

T （3）power （3）power完完完完完完 power （2）

 \(\checkmark\)
 －
 －

 \(\square\)

\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)

\begin{abstract}

\end{abstract}
\(\square\)

\footnotetext{

}
 （2） （3）power （3）power （3）power

\footnotetext{
\(\square\)
}

\section*{Building Gates (transistors)}
厄

3

F
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

 POWer

\begin{abstract}
\(\qquad\)
\end{abstract}
I

Building Gates (transistors) \(0^{2}+2\)
\[
\square
\]
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
,

power

\(\qquad\)
-
-

\(\square\) \(<\) 5 -
\(\qquad\)
\(\qquad\)

Building Gates (transistors)

0
\(\operatorname{lom}\)

\author{
\[
\xrightarrow{1}
\] \\ \\ \(\qquad\) \\ \\ \[
\square
\] \\ \\ I
}
er

uilding Gates (transistors)

Presses)

Corer

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{}

\(\qquad\)
er

Building Gates (transistors)

都

power
\(\qquad\)

I
0

\footnotetext{

}
0
0
0
0
0
0
\(\square\)

 -
 \(\square\)

\(\qquad\)
power
Pa

power
POWer
Pl
POWer
Pl
POWer
Pl
power
power
power
power

(a rn
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) ?

\(\qquad\) \(\square\)
F

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
) -

 \\ \author{
\\ \title{
\section*{Building Gates (transistors)}
}
} \\ \author{
\\ \title{
\section*{Building Gates (transistors)}
}
}
 -
 \(\square\)
\(\qquad\)

 (2)
F \\ \section*{\section*{Building Gates (transistors) \\ \section*{\section*{Building Gates (transistors) \\ \\ (ans) \\ \\ }}
(unalisisis)

Power
Power
Power
Power

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

(
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

(s)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\begin{tabular}{l}
(\\
\hline
\end{tabular}
Power
power
\(\qquad\)
power

 en er

Building Gates (transistors)

Building Gates (transistors)

Building Gates (transistors)

AND gate

Building Gates (transistors)

OR gate

 \(\qquad\)

Building Gates (transistors)

OR gate
OR gate
-
 0 ,
OR Building Gates (transistors

\(\qquad\)
\(\qquad\)

Building Gates (transistors)

OR gate
OK gate
片 0

OR

Building Gates (transistors)

OR gate
\(+\)
\[
[
\]

Building Gates (transistors) power
NOT gate
\(+2\) \(\qquad\) (POPS NOT gate
(
\(\qquad\)
wilding Gates (transistors)

 \(\square\) power
NOT gate power
NOT gate power
NOT gate 0 \(\qquad\)

\[
\begin{equation*}
1 \tag{rex}
\end{equation*}
\]
\(-2\)

Building Gates (transistors)

NOT gate

\(\qquad\)
\(\qquad\)

\footnotetext{
\(\square\)
\[
\square
\]
}

 -- Power D \(\square\) ((((
 (

.

-
NOI gat```

