723

$723 = 7 \times 100 + 2 \times 10 + 3 \times 1$

$723 = 7 \times 100 + 2 \times 10 + 3 \times 1$ = 7 \times 10² + 2 \times 10¹ + 3 \times 10⁰

$5349 = 5 \times 10^3 + 3 \times 10^2 + 4 \times 10^1 + 9 \times 10^0$

Why base 10?

257 (base 8) 2x8² + 5x8¹ + 7x8⁰ 2x64 + 5x8 + 7x1 175 (base 10)

0110 (base 2) $0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$ $0 \times 8 + 1 \times 4 + 1 \times 2 + 0 \times 1$ 6 (base 10)

\bigcirc

2-bit binary number

max value = 2^2 - 1

000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

3-bit binary number

max value = $2^3 - 1$

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

4-bit binary number

max value = $2^4 - 1$

Binary Numbers (why?)

reliability!

Binary Numbers (why?)

Binary Numbers (why?)

How do we encode negative numbers?

use left-most bit to represent sign

3-bit signed binary number

sign 2120		
000	0	
001	1	
010	2	
011	3	
100	-0	???
101	-1	
110	-2	
111	-3	

3-bit signed binary number

I. start with an unsigned 4-bit binary number where leftmost bit is 0

• 0110 = 6

I. start with an unsigned 4-bit binary number where leftmost bit is 0

• 0110 = 6

2. complement your binary number (flip bits)

• 1001

I. start with an unsigned 4-bit binary number where leftmost bit is 0

• 0110 = 6

2. complement your binary number (flip bits)

• 1001

3. add one to your binary number

• 1010 = -6

positive		complement	+1	negat
\bigcirc	000			0
1	001			-1
2	010			-2
3	011			-3

3-bit signed binary number

ative

3-bit signed binary number

3-bit signed binary number

positive		complement	+	nega
\bigcirc	000			0
1	001	→110	<u>111</u>	-1
2	010	→101	<u>110</u>	-2
3	011	100	10 1	-3

3-bit signed binary number

gative

3-bit signed binary number

3-bit signed binary number

we lost a number?

we lost a number?

complement - l

complement -I

- 011 ← - 100 •

Ø10 -2 Ø11 -1 100 +1 110 +2

complement -I 100 ← 011 ← 100

complement - l

 $4 \quad 100 - 011 - 100$

n-bit unsigned binary numbers: 0...2ⁿ-1

n-bit signed binary numbers: -2ⁿ⁻¹... 2ⁿ⁻¹-1

0010 2 0010 2 ╋ ╋ 0100 4

summing unsigned binary numbers is easy

 $\begin{array}{cccc} 0010 & 2 \\ 1010 & -2 \\ + & ---- & + & - \\ 1100 & 0 \end{array}$

?

summing signed binary numbers

	0011	3
	1011	-3
╋╾		+ -
	1110	\bigotimes

?

summing signed binary numbers

0111 = ?

0111 = 7

1011 = ?

subtract I 1011 1010

subtract l complement 1011 1010 0101

subtract l complement 1011 1010 0101

4-bit signed (two's complement) binary number

5

1011 = -5

Binary Numbers

How do we encode fractional numbers?

Binary Numbers

± mantissa x base ± exponent

Boolean Logic (variables)

I = True

0 = False

a	b	a and b
	0	0
0		0
0	0	0

a and b

a	b	a or b
	0	
0		
0	0	0

a or b

a	not a
	0
0	

not **a**

input output (boolean variable) (boolean variable)

a, b a and b

a or b

not **a**

Gates

a	b	a and b
	0	0
0		0
0	0	0

Gates

a	b	a or b
	0	
0		
0	0	0

Gates

a	not a
	0
0	

AND gate

OR gate

OR gate

OR gate

NOT gate

NOT gate

- 0