
Macros

Announcements

Macros

Macros Perform Code Transformations

4

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

4

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

4

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

4

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

4

(define-macro (twice expr)
 (list 'begin expr expr))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

4

(define-macro (twice expr)
 (list 'begin expr expr))

> (twice (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

4

(define-macro (twice expr)
 (list 'begin expr expr))

> (twice (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

4

(define-macro (twice expr)
 (list 'begin expr expr))

> (twice (print 2)) (begin (print 2) (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

4

(define-macro (twice expr)
 (list 'begin expr expr))

> (twice (print 2))
2
2

(begin (print 2) (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

4

(define-macro (twice expr)
 (list 'begin expr expr))

> (twice (print 2))
2
2

Evaluation procedure of a macro call expression:

(begin (print 2) (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

4

(define-macro (twice expr)
 (list 'begin expr expr))

> (twice (print 2))
2
2

Evaluation procedure of a macro call expression:

• Evaluate the operator sub-expression, which evaluates to a macro

(begin (print 2) (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

4

(define-macro (twice expr)
 (list 'begin expr expr))

> (twice (print 2))
2
2

Evaluation procedure of a macro call expression:

• Evaluate the operator sub-expression, which evaluates to a macro

• Call the macro procedure on the operand expressions without evaluating them first

(begin (print 2) (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

4

(define-macro (twice expr)
 (list 'begin expr expr))

> (twice (print 2))
2
2

Evaluation procedure of a macro call expression:

• Evaluate the operator sub-expression, which evaluates to a macro

• Call the macro procedure on the operand expressions without evaluating them first

• Evaluate the expression returned from the macro procedure

(begin (print 2) (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

4

(define-macro (twice expr)
 (list 'begin expr expr))

> (twice (print 2))
2
2

Evaluation procedure of a macro call expression:

• Evaluate the operator sub-expression, which evaluates to a macro

• Call the macro procedure on the operand expressions without evaluating them first

• Evaluate the expression returned from the macro procedure

(Demo)

(begin (print 2) (print 2))

For Macro

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

6

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

6

scm> (for x (2 3 4 5) (* x x))
(4 9 16 25)

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

6

scm> (map (lambda (x) (* x x)) (2 3 4 5))

scm> (for x (2 3 4 5) (* x x))
(4 9 16 25)

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

6

scm> (map (lambda (x) (* x x)) (2 3 4 5))
(4 9 16 25)

scm> (for x (2 3 4 5) (* x x))
(4 9 16 25)

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

6

scm> (map (lambda (x) (* x x)) (2 3 4 5))
(4 9 16 25)

scm> (for x (2 3 4 5) (* x x))
(4 9 16 25)

(define-macro (for sym vals expr)

 (list 'map ___)

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

6

scm> (map (lambda (x) (* x x)) (2 3 4 5))
(4 9 16 25)

scm> (for x (2 3 4 5) (* x x))
(4 9 16 25)

(define-macro (for sym vals expr)

 (list 'map ___)(list 'lambda (list sym) expr) vals)

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

6

scm> (map (lambda (x) (* x x)) (2 3 4 5))
(4 9 16 25)

scm> (for x (2 3 4 5) (* x x))
(4 9 16 25)

(define-macro (for sym vals expr)

 (list 'map ___)(list 'lambda (list sym) expr) vals)

(Demo)

Implementing Macros

(Demo)

