
Final Examples Announcements

Trees

Tree-Structured Data

4

def tree(label, branches=[]):
 return [label] + list(branches)

def label(t):
 return t[0]

def branches(t):
 return t[1:]

def is_leaf(t):
 return not branches(t)

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 self.branches = list(branches)

 def is_leaf(self):
 return not self.branches

A tree can contains other trees:

[5, [6, 7], 8, [[9], 10]]

(+ 5 (- 6 7) 8 (* (- 9) 10))

(S
 (NP (JJ Short) (NNS cuts))
 (VP (VBP make)
 (NP (JJ long) (NNS delays)))
 (. .))

 Midterm 1
 Midterm 2

Tree processing often involves
recursive calls on subtrees

Tree Processing

Solving Tree Problems

Implement bigs, which takes a Tree instance t containing integer labels. It returns the
number of nodes in t whose labels are larger than all labels of their ancestor nodes.

def bigs(t):
 """Return the number of nodes in t that are larger than all their ancestors.

 >>> a = Tree(1, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)])])])
 >>> bigs(a)
 4
 """

6

1

4

3

0

24 5The root label is always larger than all of its ancestors

if node.label > max(ancestors):

if t.is_leaf():
 return ___
else:
 return ___([___ for b in t.branches])

if node.label > max_ancestors:

Somehow track a
list of ancestors

Somehow track the
largest ancestor

☑

☑

☑

☑

Somehow increment
the total count

Implement bigs, which takes a Tree instance t containing integer labels. It returns the
number of nodes in t whose labels are larger than any labels of their ancestor nodes.

def bigs(t):
 """Return the number of nodes in t that are larger than all their ancestors.

 >>> a = Tree(1, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)])])])
 >>> bigs(a)
 4
 """
 def f(a, x):

 if ___:

 return 1 + ___

 else:

 return ___

 return ___

Solving Tree Problems

7

a.label > x

sum(f(b, a.label) for b in a.branches)

sum(f(b, x) for b in a.branches) []

 []

f(t,)

node.label > max_ancestors

Somehow track the
largest ancestor

Root label is always larger than its ancestors

1

4

3

0

24 5

☑

☑

☑

☑

f(,0)

f(,1)

f(,4) f(,4)

f(,1)

f(,3)

f(,3)

Somehow increment the total count

t.label - 1

Some initial value for the largest ancestor so far...

A node in t max_ancestor

Recursive Accumulation

Solving Tree Problems

Implement bigs, which takes a Tree instance t containing integer labels. It returns the
number of nodes in t whose labels are larger than any labels of their ancestor nodes.

def bigs(t):
 """Return the number of nodes in t that are larger than all their ancestors."""
 n = 0

 def f(a, x):

 if ________________________:

 n += 1

 ___________________________:

 f(_____________________)

 return n
9

f(t, t.label - 1)

b, max(a.label, x)

for b in a.branches

a.label > x

nonlocal n

Somehow track the
largest ancestor

node.label > max_ancestors

Somehow increment
the total count

Root label is always larger than its ancestors

Designing Functions

How to Design Programs

From Problem Analysis to Data Definitions
Identify the information that must be represented and how it is represented in the chosen
programming language. Formulate data definitions and illustrate them with examples.

Signature, Purpose Statement, Header
State what kind of data the desired function consumes and produces. Formulate a concise
answer to the question what the function computes. Define a stub that lives up to the
signature.

Functional Examples
Work through examples that illustrate the function’s purpose.

Function Template
Translate the data definitions into an outline of the function.

Function Definition
Fill in the gaps in the function template. Exploit the purpose statement and the examples.

Testing
Articulate the examples as tests and ensure that the function passes all. Doing so
discovers mistakes. Tests also supplement examples in that they help others read and
understand the definition when the need arises—and it will arise for any serious program.

11https://htdp.org/2018-01-06/Book/

Applying the Design Process

Designing a Function

Implement smalls, which takes a Tree instance t containing integer labels. It returns the
non-leaf nodes in t whose labels are smaller than any labels of their descendant nodes.

13

def smalls(t):
 """Return the non-leaf nodes in t that are smaller than all their descendants.

 >>> a = Tree(1, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])])])
 >>> sorted([t.label for t in smalls(a)])
 [0, 2]

 """
 result = []
 def process(t):

 process(t)
 return result

1

3

0

6

2

4 5

☑
☑

[,]

2

4 5

0

6

Signature: Tree -> List of Trees

 if t.is_leaf():
 return t.label
 else:

 return min(...)

Signature: Tree -> number
"Find smallest label in t & maybe add t to result"

Designing a Function

Implement smalls, which takes a Tree instance t containing integer labels. It returns the
non-leaf nodes in t whose labels are smaller than any labels of their descendant nodes.

14

def smalls(t):
 """Return the non-leaf nodes in t that are smaller than all their descendants.

 >>> a = Tree(1, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])])])
 >>> sorted([t.label for t in smalls(a)])
 [0, 2]

 """
 result = []
 def process(t):

 process(t)
 return result

1

3

0

6

2

4 5

☑
☑

[,]

2

4 5

0

6

Signature: Tree -> List of Trees

 if t.is_leaf():
 return __
 else:
 smallest = ______________________________________
 if __:

 return min(smallest, t.label)

Signature: Tree -> number
"Find smallest label in t & maybe add t to result"

t.label

t.label < smallest
result.append()t

smallest label
in a branch of t

min([process(b) for b in t.branches])

