
CS 61A Trees, Binary Numbers

Fall 2020 Discussion 5: September 30, 2020

1 Trees
7

1

3

2

−4 0

8

6

11

16

17

19

20

In computer science, trees are recursive data structures that are widely used in

various settings. The diagram to the right is an example of a tree.

Notice that the tree branches downward. In computer science, the root of a tree

starts at the top, and the leaves are at the bottom.

Some terminology regarding trees:

• Parent node: A node that has branches. Parent nodes can have multiple

branches.

• Child node: A node that has a parent. A child node can only belong to one

parent.

• Root: The top node of the tree. In our example, the node that contains 7 is

the root.

• Label: The value at a node. In our example, all of the integers are values.

• Leaf : A node that has no branches. In our example, the nodes that contain

−4, 0, 6, 17, and 20 are leaves.

• Branch: A subtree of the root. Note that trees have branches, which are

trees themselves: this is why trees are recursive data structures.

• Depth: How far away a node is from the root. In other words, the number

of edges between the root of the tree to the node. In the diagram, the node

containing 19 has depth 1; the node containing 3 has depth 2. Since there are

no edges between the root of the tree and itself, the depth of the root is 0.

• Height: The depth of the lowest leaf. In the diagram, the nodes containing

−4, 0, 6, and 17 are all the “lowest leaves,” and they have depth 4. Thus, the

entire tree has height 4.

In computer science, there are many different types of trees. Some vary in the

number of branches each node has; others vary in the structure of the tree.

2 Trees, Binary Numbers

Implementation
A tree has both a value for the root node and a sequence of branches, which are

also trees. In our implementation, we represent the branches as a list of trees. Since

a tree is an abstract data type, our choice to use lists is just an implementation

detail.

• The arguments to the constructor tree are the value for the root node and

an optional list of branches. If no branches parameter is provided, the default

value [] is used.

• The selectors for these are label and branches.

Note that branches returns a list of trees and not a tree directly. It’s important to

distinguish between working with a tree and working with a list of trees.

We have also provided a convenience function, is_leaf.

Let’s try to create the tree below.

1

3

4 5 6

2

Example tree construction

t = tree(1,

[tree(3,

[tree(4),

tree(5),

tree(6)]),

tree(2)])

Questions
1.1 Write a function that returns the height of a tree. Recall that the height of a tree

is the length of the longest path from the root to a leaf.

def height(t):

"""Return the height of a tree.

>>> t = tree(3, [tree(5, [tree(1)]), tree(2)])

>>> height(t)

2

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Trees, Binary Numbers 3

1.2 Write a function that takes in a tree and returns the maximum sum of the values

along any path in the tree. Recall that a path is from the tree’s root to any leaf.

def max_path_sum(t):

"""Return the maximum path sum of the tree.

>>> t = tree(1, [tree(5, [tree(1), tree(3)]), tree(10)])

>>> max_path_sum(t)

11

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Trees, Binary Numbers

1.3 Tutorial: Write a function that takes in a tree and squares every value. It should

return a new tree. You can assume that every item is a number.

def square_tree(t):

"""Return a tree with the square of every element in t

>>> numbers = tree(1,

... [tree(2,

... [tree(3),

... tree(4)]),

... tree(5,

... [tree(6,

... [tree(7)]),

... tree(8)])])

>>> print_tree(square_tree(numbers))

1

4

9

16

25

36

49

64

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Trees, Binary Numbers 5

1.4 Tutorial: Write a function that takes in a tree and a value x and returns a list

containing the nodes along the path required to get from the root of the tree to a

node containing x.

If x is not present in the tree, return None. Assume that the entries of the tree are

unique.

For the following tree, find path(t, 5) should return [2, 7, 6, 5]

2

7

3 6

5 11

15

def find_path(tree, x):

"""

>>> t = tree(2, [tree(7, [tree(3), tree(6, [tree(5), tree(11)])]), tree(15)])

>>> find_path(t, 5)

[2, 7, 6, 5]

>>> find_path(t, 10) # returns None

"""

if _____________________________:

return _____________________________

_____________________________:

path = _____________________________

if _____________________________:

return _____________________________

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Trees, Binary Numbers

2 Binary Numbers
In normal life, we think of numbers as being defined in base 10: i.e. We define

numbers with digits 0 through 9 and represent numbers as such:

• 11 = 1 * 10 + 1 * 1

• 123 = 1 * 100 + 2 * 10 + 3 * 1

• 9805 = 9 * 1000 + 8 * 100 + 9 * 10 + 5 * 1

But in computer science, we oftentimes look at these numbers in base 2, or binary

instead. Then, we see numbers represented in 0s and 1s and breakdown their digits

in terms of powers of two:

• 11 = 1 * 8 + 0 * 4 + 1 * 2 + 1 * 1 = 1011

• 3 = 1 * 2 + 1 * 1 = 11

• 6 = 1 * 4 + 1 * 2 + 0 * 1 = 110

2.1 Fill in the table to convert the following numbers between decimal and binary.

Decimal Binary (unsigned)

5

10

14

37

10

101010

1100101

2.2 Write a function that takes in a tree consisting of ’0’s and ’1’s t and a list of ”binary

numbers” nums and returns a new tree that contains only the numbers in nums that

exist in t. If there are no numbers in nums that exist in t, return None.

Definition: Each binary number is represented as a string. A binary number n

exists in t if there is some path from the root to leaf of t whose values are equal to

n.

For example, if t is as follows:

′1′

′0′

′0′ ′1′

′1′

′0′

Then prune binary(t, [’01’, ’110’, ’100’]) should return the following tree.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Trees, Binary Numbers 7

′1′

′0′

′0′

′1′

′0′

def prune_binary(t, nums):

if _________________________:

if _____________:

return t

return None

else:

next_valid_nums = __________________________

new_branches = []

for ____________________:

pruned_branch = prune_binary(_____, next_valid_nums)

if pruned_branch is not None:

new_branches = new_branches + [__________]

if not new_branches:

return None

return ______________________________

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Trees
	Binary Numbers

