
CS 61A Linked Lists, Trees, Representation
Fall 2020 Discussion 8: October 21, 2020

1 Representation - A Note on Str and Repr
There are two main ways to produce the ”string” of an object in Python: str()

and repr(). While the two are similar, they are used for different purposes. str()

is used to describe the object to the end user in a ”Human-readable” form, while

repr() can be thought of as a ”Computer-readable” form mainly used for debugging

and development.

When we define a class in Python, str() and repr() are both built-in functions

for the class. We can call an object’s str() and repr() by using their respective

functions. These functions can be invoked by calling repr(obj) or str(obj) rather

than the dot notation format obj. repr () or obj. str (). In addition, the

print() function calls the str() function of the object, while simply calling the

object in interactive mode calls the repr() function.

Here’s an example:

class Test:

def __str__(self):

return "str"

def __repr__(self):

return "repr"

>>> a = Test()

>>> str(a)

'str'

>>> repr(a)

'repr'

>>> print(a)

str

>>> a

repr

2 Linked Lists, Trees, Representation

Questions
1.1 What would Python display? Feel free to use the environment diagram template

below to help with visualization.

class A():

def __init__(self, x):

self.x = x

def __repr__(self):

return self.x

def __str__(self):

return self.x * 2

class B():

def __init__(self):

print("boo!")

self.a = []

def add_a(self, a):

self.a.append(a)

def __repr__(self):

print(len(self.a))

ret = ""

for a in self.a:

ret += str(a)

return ret

>>> A("one")

>>> print(A("one"))

>>> repr(A("two"))

>>> b = B()

>>> b.add_a(A("a"))

>>> b.add_a(A("b"))

>>> b

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists, Trees, Representation 3

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Linked Lists, Trees, Representation

2 Linked Lists
There are many different implementations of sequences in Python. Today, we’ll

explore the linked list implementation.

A linked list is either an empty linked list, or a Link object containing a first value

and the rest of the linked list.

To check if a linked list is an empty linked list, compare it against the class attribute

Link.empty:

if link is Link.empty:

print('This linked list is empty!')

else:

print('This linked list is not empty!')

Implementation
class Link:

empty = ()

def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)

self.first = first

self.rest = rest

def __repr__(self):

if self.rest:

rest_str = ', ' + repr(self.rest)

else:

rest_str = ''

return 'Link({0}{1})'.format(repr(self.first), rest_str)

def __str__(self):

string = '<'

while self.rest is not Link.empty:

string += str(self.first) + ' '

self = self.rest

return string + str(self.first) + '>'

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists, Trees, Representation 5

Questions
2.1 Write a function that takes in a a linked list and returns the sum of all its elements.

You may assume all elements in lnk are integers.

def sum_nums(lnk):

"""

>>> a = Link(1, Link(6, Link(7)))

>>> sum_nums(a)

14

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Linked Lists, Trees, Representation

2.2 Write a function that takes in a Python list of linked lists and multiplies them

element-wise. It should return a new linked list.

If not all of the Link objects are of equal length, return a linked list whose length is

that of the shortest linked list given. You may assume the Link objects are shallow

linked lists, and that lst of lnks contains at least one linked list.

def multiply_lnks(lst_of_lnks):

"""

>>> a = Link(2, Link(3, Link(5)))

>>> b = Link(6, Link(4, Link(2)))

>>> c = Link(4, Link(1, Link(0, Link(2))))

>>> p = multiply_lnks([a, b, c])

>>> p.first

48

>>> p.rest.first

12

>>> p.rest.rest.rest is Link.empty

True

"""

Note: you might not need all lines in this skeleton code

___________________ = ___________

for _______________________________________:

if __:

__

__

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists, Trees, Representation 7

2.3 Tutorial: Write a recursive function flip two that takes as input a linked list lnk

and mutates lnk so that every pair is flipped.

def flip_two(lnk):

"""

>>> one_lnk = Link(1)

>>> flip_two(one_lnk)

>>> one_lnk

Link(1)

>>> lnk = Link(1, Link(2, Link(3, Link(4, Link(5)))))

>>> flip_two(lnk)

>>> lnk

Link(2, Link(1, Link(4, Link(3, Link(5)))))

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Linked Lists, Trees, Representation

2.4 Tutorial: Implement filter link, which takes in a linked list link and a function

f and returns a generator which yields the values of link for which f returns True.

Try to implement this both using a while loop and without using any form of

iteration.

def filter_link(link, f):

"""

>>> link = Link(1, Link(2, Link(3)))

>>> g = filter_link(link, lambda x: x % 2 == 0)

>>> next(g)

2

>>> next(g)

StopIteration

>>> list(filter_link(link, lambda x: x % 2 != 0))

[1, 3]

"""

while _________________________:

if ________________________:

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists, Trees, Representation 9

3 Trees
Recall the tree abstract data type: a tree is defined as having a label and some

branches. Previously, we implemented the tree abstraction using Python lists. Let’s

look at another implementation using objects instead:

class Tree:

def __init__(self, label, branches=[]):

for b in branches:

assert isinstance(b, Tree)

self.label = label

self.branches = branches

def is_leaf(self):

return not self.branches

Notice that with this implementation we can mutate a tree using attribute assign-

ment, which wasn’t possible in the previous implementation using lists.

>>> t = Tree(3, [Tree(4), Tree(5)])

>>> t.label = 5

>>> t.label

5

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Linked Lists, Trees, Representation

Questions
3.1 Define a function make even which takes in a tree t whose values are integers, and

mutates the tree such that all the odd integers are increased by 1 and all the even

integers remain the same.

def make_even(t):

"""

>>> t = Tree(1, [Tree(2, [Tree(3)]), Tree(4), Tree(5)])

>>> make_even(t)

>>> t.label

2

>>> t.branches[0].branches[0].label

4

"""

3.2 Define a function square tree(t) that squares every value in the non-empty tree

t. You can assume that every value is a number.

def square_tree(t):

"""Mutates a Tree t by squaring all its elements."""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists, Trees, Representation 11

3.3 Tutorial: Define the procedure find paths that, given a Tree t and an entry,

returns a list of lists containing the nodes along each path from the root of t to

entry. You may return the paths in any order.

For instance, for the following tree tree ex, find paths should return:

2

7

3 6

5 11

1

5

def find_paths(t, entry):

>>> tree_ex = Tree(2, [Tree(7, [Tree(3), Tree(6, [Tree(5), Tree(11)])]), Tree(1, [Tree(5)])])

>>> find_paths(tree_ex, 5)

[[2, 7, 6, 5], [2, 1, 5]]

>>> find_paths(tree_ex, 12)

[]

paths = []

if _____________________________:

__

for __________________________________:

___:

return _______________________

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

12 Linked Lists, Trees, Representation

3.4 Write a function that combines the values of two trees t1 and t2 together with the

combiner function. Assume that t1 and t2 have identical structure. This function

should return a new tree.

Hint: consider using the zip() function, which returns an iterator of tuples where

the first items of each iterable object passed in form the first tuple, the second items

are paired together and form the second tuple, and so on and so forth.

def combine_tree(t1, t2, combiner):

"""

>>> a = Tree(1, [Tree(2, [Tree(3)])])

>>> b = Tree(4, [Tree(5, [Tree(6)])])

>>> combined = combine_tree(a, b, mul)

>>> combined.label

4

>>> combined.branches[0].label

10

"""

3.5 Implement the alt tree map function that, given a function and a Tree, applies the

function to all of the data at every other level of the tree, starting at the root.

def alt_tree_map(t, map_fn):

"""

>>> t = Tree(1, [Tree(2, [Tree(3)]), Tree(4)])

>>> negate = lambda x: -x

>>> alt_tree_map(t, negate)

Tree(-1, [Tree(2, [Tree(-3)]), Tree(4)])

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Representation - A Note on Str and Repr
	Linked Lists
	Trees

