
CS 61A Final Review
Fall 2020 Discussion 14: December 2, 2020

1 Recursion
1.1 (Adapted from Fall 2013) Fill in the blanks in the implementation of paths, which

takes as input two positive integers x and y. It returns a list of paths, where

each path is a list containing steps to reach y from x by repeated incrementing or

doubling. For instance, we can reach 9 from 3 by incrementing to 4, doubling to 8,

then incrementing again to 9, so one path is [3, 4, 8, 9]

def paths(x, y):

"""Return a list of ways to reach y from x by repeated

incrementing or doubling.

>>> paths(3, 5)

[[3, 4, 5]]

>>> sorted(paths(3, 6))

[[3, 4, 5, 6], [3, 6]]

>>> sorted(paths(3, 9))

[[3, 4, 5, 6, 7, 8, 9], [3, 4, 8, 9], [3, 6, 7, 8, 9]]

>>> paths(3, 3) # No calls is a valid path

[[3]]

"""

if _________________________:

return __

elif _______________________:

return __

else:

a = ___

b = ___

return __

2 Final Review

1.2 We will now write one of the faster sorting algorithms commonly used, known as

merge sort. Merge sort works like this:

1. If there is only one (or zero) item(s) in the sequence, it is already sorted!

2. If there are more than one item, then we can split the sequence in half, sort each

half recursively, then merge the results, using the merge procedure described

below. The result will be a sorted sequence.

Using the algorithm described, write a function mergesort(seq) that takes an un-

sorted sequence and sorts it.

Recall the merge procedure is as follows:

def merge(s1, s2):

""" Merges two sorted lists """

if len(s1) == 0:

return s2

elif len(s2) == 0:

return s1

elif s1[0] < s2[0]:

return [s1[0]] + merge(s1[1:], s2)

else:

return [s2[0]] + merge(s1, s2[1:])

def mergesort(seq):

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Final Review 3

2 Trees
2.1 Implement long paths, which returns a list of all paths in a tree with length at least

n. A path in a tree is a linked list of node values that starts with the root and ends

at a leaf. Each subsequent element must be from a child of the previous value’s

node. The length of a path is the number of edges in the path (i.e. one less than

the number of nodes in the path). Paths are listed in order from left to right. See

the doctests for some examples.

def long_paths(tree, n):

"""Return a list of all paths in tree with length at least n.

>>> t = Tree(3, [Tree(4), Tree(4), Tree(5)])

>>> left = Tree(1, [Tree(2), t])

>>> mid = Tree(6, [Tree(7, [Tree(8)]), Tree(9)])

>>> right = Tree(11, [Tree(12, [Tree(13, [Tree(14)])])])

>>> whole = Tree(0, [left, Tree(13), mid, right])

>>> for path in long_paths(whole, 2):

... print(path)

...

<0 1 2>

<0 1 3 4>

<0 1 3 4>

<0 1 3 5>

<0 6 7 8>

<0 6 9>

<0 11 12 13 14>

>>> for path in long_paths(whole, 3):

... print(path)

...

<0 1 3 4>

<0 1 3 4>

<0 1 3 5>

<0 6 7 8>

<0 11 12 13 14>

>>> long_paths(whole, 4)

[Link(0, Link(11, Link(12, Link(13, Link(14)))))]

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Final Review

2.2 Write a function that takes a Tree object and returns the elements at the depth

with the most elements.

In this problem, you may find it helpful to use the second optional argument to sum,

which provides a starting value. All items in the sequence to be summed will be

concatenated to the starting value. By default, start will default to 0, which allows

you to sum a sequence of numbers. We provide an example of sum starting with a

list, which allows you to concatenate items in a list.

def widest_level(t):

"""

>>> sum([[1], [2]], [])

[1, 2]

>>> t = Tree(3, [Tree(1, [Tree(1), Tree(5)]),

... Tree(4, [Tree(9, [Tree(2)])])])

>>> widest_level(t)

[1, 5, 9]

"""

levels = []

x = [t]

while __:

__________ = sum(_______________________________, [])

return max(levels, key=_________________________________)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Final Review 5

3 Mutation
3.1 For each row below, fill in the blanks in the output displayed by the interactive

Python interpreter when the expression is evaluated. Expressions are evaluated in

order, and expressions may affect later expressions.

>>> cats = [1, 2]

>>> dogs = [cats, cats.append(23), list(cats)]

>>> cats

>>> dogs[1] = list(dogs)

>>> dogs[1]

>>> dogs[0].append(2)

>>> cats

>>> cats[1::2]

>>> cats[:3]

>>> dogs[2].extend([list(cats).pop(0), 3])

>>> dogs[3]

>>> dogs

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Final Review

3.2 Fill in the following lines so that the code creates the environment diagram shown

below. You may only use append, extend, 1, banana, and bread in your

solution.

def bake(banana, bread):

_______________(____________(__________)) # This line is Multiple Choice

Select all correct answers for the blank above

A. banana.append(bread.append(1))

B. bread.append(banana.append(1))

C. banana.extend([bread.extend([1])])

D. bread.extend([banana.extend([1])])

bread += banana[: (len(______________) - ______________)]

banana._______________(bread[___________[______________]])

return ___________, ______________

s = [1]

banana, bread = bake(s, [7, 2, s])

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Final Review 7

3.3 Fill in the following lines so that the code creates the environment diagram shown

below.

def amon(g):

(a)

def u(s):

(b)

f = lambda x: x + g._________ + n

(c)

(d)

return f(s)

return u

g = [1, 2, 3]

skeld = amon(g)

pink = skeld(1)

purple = skeld(2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Final Review

4 OOP
4.1 Fill in the classes Emotion, Joy, and Sadness below so that you get the following

output from the Python interpreter.

>>> Emotion.num

0

>>> joy = Joy()

>>> sadness = Sadness()

>>> Emotion.num # number of Emotion instances created

2

>>> joy.power

5

>>> joy.catchphrase() # Print Joy's catchphrase

Think positive thoughts

>>> sadness.catchphrase() #Print Sad's catchphrase

I'm positive you will get lost

>>> sadness.power

5

>>> joy.feeling(sadness) # When both Emotions have same power value, print "Together"

Together

>>> sadness.feeling(joy)

Together

>>> joy.power = 7

>>> joy.feeling(sadness) # Print the catchphrase of the more powerful feeling before the less

powerful feeling

Think positive thoughts

I'm positive you will get lost

>>> sadness.feeling(joy)

Think positive thoughts

I'm positive you will get lost

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Final Review 9

class Emotion(_______):

def __init__(self):

def feeling(self, other):

class Joy(_______):

def catchphrase(self):

class Sadness(_______):

def catchphrase(self):

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Final Review

5 Mutable Linked Lists and Trees
5.1 Write a function that takes a sorted linked list of integers and mutates it so that

all duplicates are removed.

def remove_duplicates(lnk):

"""

>>> lnk = Link(1, Link(1, Link(1, Link(1, Link(5)))))

>>> remove_duplicates(lnk)

>>> lnk

Link(1, Link(5))

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Final Review 11

6 Generators
6.1 Write a generator function that yields functions that are repeated applications of

a one-argument function f. The first function yielded should apply f 0 times (the

identity function), the second function yielded should apply f once, etc.

def repeated(f):

"""

>>> double = lambda x: 2 * x

>>> funcs = repeated(double)

>>> identity = next(funcs)

>>> double = next(funcs)

>>> quad = next(funcs)

>>> oct = next(funcs)

>>> quad(1)

4

>>> oct(1)

8

>>> [g(1) for _, g in

... zip(range(5), repeated(lambda x: 2 * x))]

[1, 2, 4, 8, 16]

"""

g = __

while True:

__

__

6.2 Ben Bitdiddle proposes the following alternate solution. Does it work?

def ben_repeated(f):

g = lambda x: x

while True:

yield g

g = lambda x: f(g(x))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

12 Final Review

6.3 Implement accumulate, which takes in an iterable and a function f and yields

each accumulated value from applying f to the running total and the next element.

from operator import add, mul

def accumulate(iterable, f):

"""

>>> list(accumulate([1, 2, 3, 4, 5], add))

[1, 3, 6, 10, 15]

>>> list(accumulate([1, 2, 3, 4, 5], mul))

[1, 2, 6, 24, 120]

"""

it = iter(iterable)

__

__

for __:

__

__

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Final Review 13

7 Scheme
7.1 Write a function that takes a procedure and applies to every element in a given

nested list.

The result should be a nested list with the same structure as the input list, but

with each element replaced by the result of applying the procedure to that element.

Use the built-in list? procedure to detect whether a value is a list.

(define (deep-map fn lst)

scm> (deep-map (lambda (x) (* x x)) '(1 2 3))

(1 4 9)

scm> (deep-map (lambda (x) (* x x)) '(1 ((4) 5) 9))

(1 ((16) 25) 81)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

14 Final Review

8 SQL
(Adapted from Fall 2019) The scoring table has three columns, a player column of

strings, a points column of integers, and a quarter column of integers. The players

table has two columns, a name column of strings and a team column of strings.

Complete the SQL statements below so that they would compute the correct

result even if the rows in these tables were different than those shown. Important:

You may write anything in the blanks including keywords such as WHERE or

ORDER BY. Use the following tables for the questions below:

CREATE TABLE scoring AS

SELECT "Donald Stewart" AS player, 7 AS points, 1 AS quarter UNION

SELECT "Christopher Brown Jr.", 7, 1 UNION

SELECT "Ryan Sanborn", 3, 2 UNION

SELECT "Greg Thomas", 3, 2 UNION

SELECT "Cameron Scarlett", 7, 3 UNION

SELECT "Nikko Remigio", 7, 4 UNION

SELECT "Ryan Sanborn", 3, 4 UNION

SELECT "Chase Garbers", 7, 4;

CREATE TABLE players AS

SELECT "Ryan Sanborn" AS name, "Stanford" AS team UNION

SELECT "Donald Stewart", "Stanford" UNION

SELECT "Cameron Scarlett", "Stanford" UNION

SELECT "Christopher Brown Jr.", "Cal" UNION

SELECT "Greg Thomas", "Cal" UNION

SELECT "Nikko Remigio", "Cal" UNION

SELECT "Chase Garbers", "Cal";

8.1 Write a SQL statement to select a one-column table of quarters in which more than

10 total points were scored.

8.2 Write a SQL statement to select a two-column table of the points scored by each

team. Assume that no two players have the same name.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Final Review 15

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Recursion
	Trees
	Mutation
	OOP
	Mutable Linked Lists and Trees
	Generators
	Scheme
	SQL

